
Some Comments on Recent Tevatron Luminosity Performance

M.J. Syphers

March 8, 2007

Beams-doc-2685

The recent high-luminosity operation of the Tevatron has led some to question just how well the
collider is running relative to its ultimate performance for the given set of operational parameters.
To get a sense of where things reside, we consider below a “perfect store” – one in which every
particle participates in the integrated luminosity, and where the luminosity lifetime is governed
solely by the rate at which particles are “consumed” through collisions. From this, we can estimate
the integrated luminosity per week for such an ideal condition, or for when stores are intentionally
ended early, and compare these results with current Tevatron operations.

To begin, we note that a “perfect store,” given enough time, would deliver an integrated lu-
minosity I0 equal to the number of particles “consumed” divided by the interaction cross section;
the luminosity delivered to each experiment would be this number divided by the number of exper-
iments. For a collider with equal number of bunches in each beam, and equal bunch populations,
the ultimate integrated luminosity for the store delivered to each experiment would be

I0 =
Ntotal

nΣ
=

B N

nΣ
, (1)

where B is the number of bunches per beam, N is the number of particles per bunch, n is the
number of interaction points, and Σ is the interaction cross section.

To arrive at this conclusion analytically, consider the ideal case of a collider with equal bunch
populations in each beam, and where the beam size at the interaction point and the bunch length
do not change during the store. The luminosity can be written as

L =
f0BN2

4πσ∗2
· H. (2)

Here, σ∗ is the transverse beam size (considered to be round) at the interaction point, f0 is the
revolution frequency, and H is the hour glass form factor. Furthermore, suppose the rate at which
the particles in each beam leave the accelerator is given solely by the particle interaction rate,
namely,

BṄ = −L Σ n. (3)

Inserting Eq. 2 into Eq. 3 and integrating leads to

L(t) =
L0[

1 +
(

nL0Σ
BN0

)
t
]2

where N0 and L0 are the initial bunch intensity and initial luminosity at time t = 0.
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The integrated luminosity from the beginning of the store until time t = T is then

I ≡
∫ T

0
L(t)dt =

L0T

1 + L0T (nΣ/BN0)
. (4)

Thus, assuming the store ends intentionally at time T >> BN0/(nL0Σ), the asymptotic
integrated luminosity of the store will be

I −→ BN0

nΣ
;

that is, the maximum total integrated luminosity is the total number of particles in each beam lost
at each interaction point, divided by the interaction cross section.

In the case of the Tevatron, the population of antiprotons per bunch, N2, say, is less than that
of the protons, N1, and so the luminosity is

L =
f0BN1N2

4πσ∗2
· H. (5)

Assuming a one-to-one correspondence in the rate at which protons and antiprotons are consumed,
we define N2(t) = N(t), N1(t) = N(t) + Nr, where, Nr = N0

1 −N0
2 , and

BṄ = −L Σ n.

Here, N0
1 and N0

2 are the initial bunch intensities of each species at the beginning of the store.
Again, substituting Eq. 5 along with the definitions of N1(t) and N2(t) into the above differential
equation and integrating, we get

N(t) =
N0

2 Nr

N0
1 eNrCt −N0

2

(6)

where C ≡ nL0Σ/BN0
1 N0

2 = nf0HΣ/4πσ∗2. Thus, the luminosity evolves with time according to

L(t) = L0
N2

r eNrCt(
N0

1 eNrCt −N0
2

)2
which at large t becomes

L(t) ∼ L0

(
1− N0

2

N0
1

)2

e−NrCt.

The integrated luminosity, over a time period T , is then

I ≡
∫ T

0
L(t)dt =

BN0
2

nΣ
·

 eNrCT − 1

eNrCT − N0
2

N0
1

 =⇒ I0 =
BN0

2

nΣ
, as t→∞. (7)

As expected, the resulting maximum integrated luminosity is similar to our last result, where here
the total number of particles used is that of the less intense beam.
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Let’s ask the question(s), If the Tevatron operated under these ultimate conditions, how long
would a typical store last, how many stores would occur per week, and thus what would be the
integrated luminosity per week? Let’s assume that a store lasts until a fraction f of the possible
integrated luminosity is obtained. Furthermore, assume a turn-around time, Ta, between stores.
Using the result in Eq. 7, the length of each store would be

Tf =
1

NrC
ln

(
1− fN0

2 /N0
1

1− f

)
(8)

at which time the luminosity would have been reduced by a factor of

L(Tf )/L0 = (1− f)(1− fN0
2 /N0

1 ). (9)

The number of stores per week would be Nstores = 168 hours/(Tf + Ta), and the integrated lumi-
nosity per week would be Iweek = Nstores · f · I0.

Take parameters similar to today’s Tevatron operation. The Tevatron, with an average radius
of 1 km, has 36 bunches in each counter-rotating beam, and a transverse beam size of 25 µm at
each collision point; the factor H ≈ 0.65. Our results assume these parameters are fixed.

Take N0
1 = 2.7× 1011 for the proton beam, and N0

2 = 7× 1010 for the antiproton beam. Let’s
take a cross section of Σ = 60 mb. Suppose an average store lasts long enough to yield 85% of the
maximum I0 for our example and that the turn-around time is Ta = 2 hours. Note, that the final
luminosity would be roughly 10% of the initial luminosity under these conditions. Then for these
parameters,

L0 ≈ 270 µb−1/sec,
Tf = T0.85 ≈ 48 hr,

I0 ≈ 21 pb−1/store,
If = I0.85 ≈ 18 pb−1/store,

Nstores ≈ 3.3,

Iweek ≈ 60 pb−1.

Plots of instantaneous and integrated luminosity for a single store under these conditions are
provided in Figure 1.

Recent weeks of Tevatron operation, in which downtime due to failures was not a major factor,
have yielded integrated luminosities of 40-50 pb−1 per week. (See Figure 2.) In reality, many factors
(beam-gas interactions, intra-beam scattering, noise sources, etc.) cause the luminosity lifetime to
be shorter than that given by our simple analysis above, and thus more stores of shorter duration
are generated per week at the Tevatron. Nonetheless, it is very interesting to note that the overall
integrated luminosity per week of the Tevatron is fairly consistent with this last result, only 15-30%
away from this “ultimate” operation.
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Figure 1: Instantaneous (left) and integrated (right) luminosity vs. time through the “perfect”
store, using parameters above.

Figure 2: Weekly integrated luminosity in the Tevatron over the span of the past year.
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As a follow-on, consider that the fraction f was chosen arbitrarily above to be 85%, as that is
essentially the current practice. What value will maximize the weekly integrated luminosity under
our assumptions? Waiting long times to grab the last extra bit of events may not be worth the
wait. Differentiating the weekly integrated luminosity, we find that the optimal value of f , f̂ , must
satisfy

Ta

NrC
+ ln

(
1− f̂N0

2 /N0
1

1− f̂

)
=

f̂ · (1−N0
2 /N0

1 )
(1− f̂)(1− f̂N0

2 /N0
1 )

.

For the parameters of the previous calculation, the integrated luminosity is maximized at f̂ ≈ 0.3,
with a rather broad maximum. (See Figure 3.)
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Figure 3: Weekly integrated luminosity of “perfect stores” as a function of the fraction, f , of
“ultimate” luminosity.

Under these circumstances utilizing f = 0.3 rather than 0.85 would generate a gain in integrated
luminosity of >60%. In this case, Tf = 8 hours, for which 70% of I0 is integrated, and yields 16
stores per week for an optimized integrated luminosity per week of about 100 pb−1.

Note that under this scenario, the antiproton source would need to be able to produce B ·N0
2 =

36 · 7 × 1010 = 252 × 1010 particles in about 10 hours, which is just a tad better than the source
currently can operate at its peak performance. (Actually, this is the number that makes it to
“luminosity”; the source would need to have an even better rate, to account for losses along the
way.) As an example, suppose the stacking rate were 20 × 1010/hr, and presume an efficiency of
80% from produced antiprotons to antiprotons at collision. Then observe that ending the stores
at a value of f = 0.45 (when the luminosity is reduced to about half its initial value) will produce
about 300 × 1010 antiprotons between stores, or the required 250 × 1010 at collision. The weekly
number for this scenario is still just under ∼ 100 pb−1.

Furthermore, to end a store early may seem odd at first, as the luminosity decays to only 65%
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of its initial value before ending the store and setting up a new one. However, as indicated in
Figure 4, the integrated luminosity per week is higher, akin to “topping off” in a lepton storage
ring. For the antiproton-proton collider, the name of the game, as always, is reliability – keeping
the store in long enough to create the required number of antiprotons, and having the required
number of antiprotons “on demand.” And, as stated before, these calculations do not have all the
physics of the operational collider, i.e., emittance growth, etc. Still, near-50 pb−1 per week, 50%
of the quoted “true optimum” above, is quite remarkable given the numerous militating factors at
work. The above arguments also suggest that as long as the antiproton source can keep up, ending
stores earlier and having more frequent stores could lead to higher integrated luminosity for the
physics run.
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Figure 4: Shaded area is integrated luminosity throughout one week for f = 0.3; lines (red, in color)
show development of luminosity for f = 0.85. So long as particles can be produced on demand,
integrating over shorter times can deliver more integrated luminosity (almost twice as much) per
week. See text for details.
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